按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
“简直是我见过的最要命的东西。还不大会走路的幼儿玩的玩具是把不同断面的积木嵌进不同形状的槽子,你知道吗?读你的形式体系,就好像观看一个人把一块积木滑进木板上的每一个洞里,每一次都做得天衣无缝。”
“这么说来,你发现不了错误?”
他摇摇头。“发现不了。我滑进了和你相同的套路:只能用你的方法思考这个问题。”
雷内却已经不在老套路上了:她另辟蹊径,想出了一条截然不同的路子来解决这个问题,但却仅仅证明了原先的体系确实存在矛盾。“不过,还是谢谢你费心了。”
“你要另外找人看一看吗?”
“是的。我想我要寄给伯克利的卡拉汉看。自去年春天那次会议以来,我们一直保持着联系。”
法布里希点了点头,“他上次发表的一篇文章真的给我留下很深的印象。如果他发现了问题,请一定告诉我。我感到很好奇。”
雷内宁愿用比“好奇”更强烈的字眼来表达她自己的心情。
5b
雷内对自己的研究感到绝望了吗?卡尔知道她从来不觉得数学真的困难,而只是一种智力挑战。难道是她第一次遇到无法突破的难题吗?或者说,数学本身就是无解的吗?严格说来,卡尔自己是一个实验主义者,并不真正懂得雷内怎么创造新的数学体系。虽说听上去有点傻,但是——她是灵感枯竭了吗?
雷内是成年人,不会像神童那样,发现自己正在成为平庸的成年人而感到幻灭的痛苦。另一方面,许多数学家在三十岁之前就达到事业的巅峰。虽然她离三十岁还有几年,但也许她对这个年龄界限逼近自己而感到焦虑。
似乎不大可能,他又漫无边际地想了其他几种可能性。她会不会对学术感到愈来愈悲观?是对自己的研究过于专业化而感到悲哀吗?再不然,纯悴是对自己的工作感到厌倦了吗?
卡尔并不相信这些焦虑是雷内行为古怪的原因。果真是这样的话,他觉得自己肯定会发现蛛丝马迹。但他现在得到的印象却全然不是这么回事。令雷内感到苦恼的无论是什么,反正他猜不透。这使他感到烦恼。
6
1931年,库特·哥德尔⑥证明了两大定理。第一个定理实际上表明:数学包含或许是真实的、但在本质上却无法证明的陈述。甚至简单如算术的形式系统也可以包括精确,有意义,而且似乎真实无疑的陈述,但却无法用形式方法加以证明。
他的第二个定理表明:断言算术具有逻辑上的一致性,这就是上面所说的那种陈述之一,采用算术公理的任何方法都不能证明其真实性。也就是说,作为一种形式系统的算术无法保证不会得出1=2这样的结果。这样的矛盾也许永远不会遇到,但却无法证明绝对不会遇到。
6a
卡尔再次走进雷内的书房。她站在书桌跟前,抬头看他。他鼓起勇气说:“雷内,显然是——”
她打断她的话,“你想知道我烦恼的原因吗?好吧,我告诉你。”说着雷内便拿出一张白纸,坐在书桌跟前,“等一下,这需要一点时间。”卡尔又张开嘴,但雷内挥手示意他保持沉默。接着,她深深地吸了一口气,开始写起来。
她画了一条线,穿过纸的中央,将纸分成两栏。然后,她在一行的顶部写下数字1,另一行的顶部写下数字2。接着在这两个数字下面迅速潦草地画一些符号,又在这些符号下面的行列里把它们扩展成一串串别的符号。她边写边咬牙切齿,写下那些文字时,感觉好像她正用指甲刮过黑板似的。
写到纸的三分之二左右时,雷内开始将长串长串的符号减少成连续的短串符号。她心里想,现在要到关键处了。她意识到自己在纸上用力过重了,下意识地放松握在手中的铅笔。在她下面写出的那一行上,符号串变成相等了。接着,她重重地写了个“=”号,横过纸的底部中心线。
她将纸递给卡尔。他望着她,表示看不懂。“看一看顶部吧。”他照办了,“再看一看底部。”
他眉头紧锁。“我还是看不懂。”
“我发现了一种体系,可以使任何数字等于任何别的数字。这张纸上就证明了一和二是相等的。你随便挑两个数字,我都可以证明它们是相等的。”
卡尔似乎竭力在回忆什么。“里面肯定出现了以零为被除数的情况,对吗?”
“不对。没有不符合规则的运算,没有不严谨的术语,没有想当然假定的独立公理,全都没有。证明过程绝对没有采用任何规则禁止的东西。”
卡尔摇了摇头。“等一下。显然一和二是不相等的。”
“但在形式上它们是相等的:证明就在你手里。我使用的一切方法都是绝对无可争议的。”
“但这儿不就是矛盾吗?”
“说对了。也就是说,算术作为一种形式系统,是不一致的。”
6b
“你找不出错误来,这就是你的意思吗?”
“不对,你没有听。你以为我是因为这种情况才焦头烂额的吗?证明本身并没有错误。”
“你的意思是说,用的方法都是对的,结果却出了错?”
“正确。”
“你肯定——”他戛然而止,却太晚了。她瞪着他。她当然清楚他想说的是什么。不知她的目光是什么意思。
“你懂吗?”雷内道,“我已经推翻了大半个数学:这门学问全都没意义了。”
她焦躁起来,几乎快发疯了。卡尔小心翼翼地选择着字眼,“你怎么能这么说?数学仍然有作用。科学和经济并不会因为你这个领悟而突然崩溃的。”
“这是因为他们使用的数学纯粹是骗人的把戏。是一种口诀式的小玩意儿,跟用指关节来计算哪些月份有三十一天一样。”
“不一样。”
“为什么不一样?现在,数学与现实绝对毫无关系。且不说像虚数或者无穷小数之类的概念,现在,就连该死的整数加法都跟用指头计算毫无关系。你用指头计算,一加一始终等于二,但在纸上我可以给你无穷多的答案,这些答案全都同样有效,这意味着它们全都同样无效。我可以写出你见过的最优美的定理,但它却不过是一个瞎扯淡等式。”她苦笑起来,“实证主义者曾经说一切数学都是同义反复。他们错了:数学是自相矛盾。”
卡尔试了试另一种方式。“等一下。刚才你提到虚数这类想像出来的概念,大家不也一样接受了吗?现在不也可以这样吗?数学家们曾经相信虚数没有意义,可是现在它们成了数学的基础概念。情况完全是一样的呀。”
“不一样。当时的解决方法只是扩展语境,用在这里不起作用。虚数给数学增添新的内容,而我的形式系统却是给已经存在在那里的东西下定义。”
“但是,如果你改变语境,从不同的角度探索——”
她翻了个白眼。“不可能!这个体系是从和加法一样明白无误的公理得出的结果,无法绕过。我可以担保。”
7
1936年,格哈德·根茨恩提出了一种对算术一致性的证明,可是要做出证明,他需要采用一种有争议的方法,即人们所知道的超限归纳法。这种方法不属于正常的证明方法,因此似乎难以恰当地保证算术的一致性。根茨恩所做的是使用可疑的方法来证明显而易见的东西。
7a
卡拉汉从贝克利大学打电话来说他也不能雪中送炭,但表示愿意继续研究她的论文,似乎她触及到了某种本质的、而又令人不安的东西。他想知道她是否打算发表她的形式体系,因为这个形式体系虽然的确包含他们两人都无法发现的错误,但数学界肯定会有人能够发现的。
雷内几乎没有听见他说话,只是嘀咕今后她会打电话联系他的,近来,她与人讲话很困难,尤其是自从那次与卡尔争论以来,情况更糟糕。系里的同事们都尽量避开她。她显得心不在焉,前一天夜里她做了一个噩梦,梦见她发现了一种形式体系,可以使她将主观概念转换成数学语言,然后,她证明了生与死是相同的。
有一种可能性让她十分惊恐:她正能正在失去理智。她肯定在失去清晰的思维,这与失去理智已经相差无几了。
她责备自己,你是一个多么可笑的女人。哥德尔证明他的不完全定理后自杀了吗?
但是,哥德尔的定理是优美的,让人肃然起敬,是雷内所见到的最优美的一个定理。
而她自己的证明却嘲讽她,讥笑她。就好像谜题书中的一道难题,它说:这下我可把你难住了。你跳过这个错误,查看自己在哪儿出了问题,结果绕了一圈又兜回来,那个难题再一次对你说:又把你难住了。
她估计卡拉汉会考虑她的发现对数学的意义。数学的许多内容并没有实际用处,她的理论也可以仅仅作为一种形式而存在,研究它只是为了它包含的智力美。但这是不能持久的。自相矛盾的理论实在太无意义了,绝大多数数学家只会厌恶地置之不理。
使雷内真正感到恼火的是她自己的直觉出卖了她。那个该死的定理大有道理。它以自己怪异的方式,给人一种感觉,它是正确的。她理解它,知道它是真实的,并且相信它。
7b
想到她生日那天的情景,卡尔微笑起来。
“我不相信!你怎么可能知道?”她手里抱着一件毛衣,跑下楼来。
去年夏天,他们俩在苏格兰度假。爱丁堡一家百货商店有一件毛衣吸引住了雷内的眼光,但当时她没有买。于是他订购了这件毛衣,放在她的梳妆台抽屉里,等那天早晨给她一个惊喜。
“你这个人太容易被人一眼识破了。”他取笑她。夫妻俩都知道这话不是真话,但他还是喜欢这样告诉她。
那是两个月前的事情了。差点两个月。
现在情况不同了,需要改变一下做法。卡尔走进雷内的书房,发现她坐在椅子上,眺望窗外。“猜一猜我为我们俩搞到了什么?”
她抬起头来。“什么?”
“周末预订。在比尔特莫尔订了一套房间。我们可以放松放松,什么都不做——”
“请别说下去了。”雷内说,“卡尔,我明白你的心意。你想我们做点愉快的事情,好让我散散心,不去想这个形式体系。但不起作用。你不知道这个对我究竟是什么样的压力。”
“算了吧。算了吧。”他拉住她的手,想把她从椅子上拉起来,可是她挣开了。卡尔稍站片刻,突然她转过身来,死死盯着他。
“我想吃安眠药,这你知道吗?我几乎希望自己是一个白痴,用不着去思考形式体系。”
他大吃一惊,不知道说什么好。“你至少可以试试离开一段时间,为什么不呢?有益无害呀,说不准会分散你的心思呢。”
“没有什么可以使我分散心思。你不明白。”
“那就解释给我听吧。”
雷内呼出一门气,转身想了一下。“就好像我看见的一切都在向我大喊大叫那个矛盾。”她说,“现在我一直在给不同的数字列等号。”
卡尔陷入了沉默。突然间,他懂了。“这就