友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
麒麟书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

弗雷德里克·波尔中短篇科幻小说集-第38部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




不过,他并非那么聪慧儒雅,而依然一如愚人。但是,你如果责怪他从数目的二进位制求取帮助,他就会公开嘲笑你。

但不管怎样,这便可证明他算出来了。而且全能自动电脑及其电子同胞兄弟们今日也是这样算的。

为证实全能自动电脑是怎样运算的,让我们把某些数目拆开,看看其中包括些什么。

我们的二进位数目——比如说,87——实际上就是一种速记形式,(在这一例中)是8^1*10^1加7*10^0的“定位”讲法。数字越大,速记越显得短。比如1956,可写作:

1*10^3=1000

9*10^2=900

5*10^1=50

6*10^0=6

——————

1956

(为防止你上高中时间过长,10^1就是10的意思;10^0指10除以10,或者是1。无论你上高中有多长时间,都应该记着10^2的意思是10乘以10,或者是100,如此类推。)

在许多科学幻想小说中(别处很少见),都说这十进位制属于人类的“天生的”数数制。因为,你瞧,我们每一个人不都有双手十指吗?我们切不要把它作为理论而纠缠不休。它如果真是这样,那么当我们的探索火箭发现十二进位的天外地域(或者换言之,当我们的考古学家发现古巴比伦人比我们现代人多六倍的指头)时,它就可通过大量的机会证实自身。此外,假若我们认定这个故事天经地义,那么我们便可对全能自动电脑做出这样的“解释”:由于计算机设有可用来查数的手指,所以不得不运用一种更简单的方法。这种更简单的体制,其名称就是“二重”或“二进”制。世界上大多数数目现在都正被翻译进这种体制,以求被输入、被消化在电脑中。

二进位制恪守十进位制的所有规则。它属于定位性的;它可以表示任何有限数目;它可以用来加、减、乘、除,求指数,以及人类及全能自动电脑所知的任何代数方程。惟一的差别是:它的基数是2,不是10。它削去十进位数中的10个基数中的8个——2,3,4,5,6,7,8和9——只剩下0和1。

当然了,你是可以这样来算数的。1是一;10是二;11是三;100是四;101是五;110是六;111是七;1000是八;1001是九;1011是十;如此类推。用它可加可减:

四100

加三11

——————

等于七111

用它可乘可除:

六110

被三除11

——————

等于二10

你可以不费吹灰之力算出来,而无需背诵乘法口诀。这样使你的青春时光自由自在,在夜晚尽情欣赏棒球比赛,或者访朋问友。

回过头来再看一下伊万的俄国式乘法;让我们以稍微不同的方式再重新运算一遍。让我们将两列数目都二分,左右都是这样。我们不再削掉数字,而要在奇数边上注上“1”,在偶数边写上“0”,这样:

871931

431460

211231

100111

5151

2020

1111

现在,你可能还不知道,你做出的结果是什么样子——伊万肯定也闻所未闻——实际上你已经将两个十进位数转化成二进位数的对等物了。从下向上读,1010111是二进位中的87,1011101是二进位中的93。

要理解这样做的意思,就要牢记我们是如何将一个十进位数分开的。一个二进位数也可以分成同样的份数。惟一的区别是,份数是2的乘方相乘,而不是10的乘方相乘。这样的话,1010111,就是下边说法的速记形式:

1*2^6=64

0*2^5=0

1*2^4=16

0*2^3=0

1*2^2=4

1*2^1=2

1*2^0=1

————

87

这就是我们刚才提到的原来的数字形式。

如果你将87和93这样的数字输入全能自动电脑,它的消化功能就会给搞乱——实际上,除非这些数字先被消化,否则它就无法消受。所以你必须像我们上面所做的那样,先将它们转化成二进位数目(“数字”或“数点”)。诸如1010111和1011101这样的二进位数,全能自动电脑处理得非常好。想做乘法吗?毫无困难。全能自动电脑,依其电子途径,会如是而行:

1010111

*1011101

———————

1011111

0

1010111

1010111

1010111

0

1010111

———————

1111110011011

这看起来叫人害怕,因为人们对这种东西很不熟悉;但是,得出的结果仍然跟87*93是一样的;它是下式的速记形式:

1*2^124096

1*2^112048

1*2^101024

1*2^9512

1*2^8256

1*2^7128

0*2^60

0*2^50

1*2^416

1*2^38

0*2^20

1*2^12

1*2^01

——————

8091

请看,这多么简洁!尽管数目很大,但可以看到处理时又变得多么快捷。

又比如,加法变成简单的计数(当然是二进位数——1,10,11,100等等的计数。如果愿意,你可以称之为“一”,一十”,“十一”,以及“一百”等等,并无妨碍)。将一组数目相加,比如:

101

100

110

111

———

10110

你只需简单地数右栏数字(1,10;写下0和1表示);然后数中栏数字,当然要从一开始算起(1,10,11;写下1和1表示);然后数左栏数字,还是从一开始算起(1,10,11,100,101;写下1和10表示;写下10)。

我认为,这跟一个代数式一样容易计算,乘法也差不多是这样。乘法只用写下数目,将位中的一个适当数目向左移,或者根本无需写下数目(取决于你是用“1”还是“0”乘那个数字)。因此,此外不外是相加;而相加已如上述,不过是数数而已,完全用不着乘法表!用不着死记硬背叫人生厌!无怪乎全能自动电脑和伊万都喜爱它!

如果说这样的二进位制有一个缺陷的话,那就是,它过分简洁明快,所以有些单调乏味。

不过,世上的工作都充满着单调乏味的操作过程,但我们又不能不做。我们已经找到了处理它们的两个好办法——要么把它们交给机器(像全能自动电脑),它们没有能力产生厌烦情绪;要么看成是一种机械性的常规把它们掌握住。

我妻子观察出(就像很多妻子有时的观察),不论她提出什么建议做出什么变动都无所谓,我经常都能找到十数个绝妙的理由使之保持原样。由于人们的保守性,我们大多数人都会寻找借口反对任何形式的变化(“魔鬼也是自己熟悉的好”)。又由于人也是可塑的,所以,一旦变化带来报偿,我们不管怎样经常都能逾越我们的异见。

让我们来看一下换用二进位制可能带来的不便和便利吧。这种情况实际上是引不起争论的,因为电脑默无声息的票数已以压倒性多数超过了我们人类的票数。但还是让我们来看一下,对我们这样有厌烦能力、爱吹毛求疵的人类有什么益处。

不便之处马上就会显现出来,首先是二进位数跟它的十进位数相比好像大而无当。但是,二进位数实际上并不比十进位数长多少(大约三位),这倒是没有问题的。事实上,真正大的数目不管在什么进位制中都是根本不易运用的。在目前流行的十进位制中,科技人员要么用近似值(比如3*10^47)、要么用它们原初的分解因式和指数形式(19^3*641^5*1861)、要么用其他因数或者速记方式来表示大的数目。甚至在我们每天的报纸上,连标题也倾向于用6。5百万美元,而不用6;500;000美元。

至于“大如居室”的数目——啊,我们假设在百万之内——仅仅由于长度这样的问题似乎并不能对二进法产生否定意见。你可以用20个二进位数点表示那么大的数目(相应的十进位数是七位数),像这样一个——随便挑选的——101001111001011000010确实有点儿吓人。但是,它的十进位等数1372866不是很可爱的吗?

或许数目本身并没有什么,或许我们的阅读方式需要某种改变。比如,1111110011011这个数目。你在几页前已跟它见过{奇书qisuu手机电子书}面(可谓故友重逢,那是87同93相乘的结果)。不过,你自有何曾相识之感,几乎认不出它来。这是不是由于它的认知价值本质是很低的?抑或是我们在阅读(以及形成书写习惯)这种数字时缺乏训练?

请记着,在十进位制里,我们是将三个一组隔开,以求简化阅读这样大的数目。比如说吧,5000000000000本身很难读,而5;000;000;000;000,则一目了然,一下子就可看出是五个百万平方。我们为什么不给二进位数目找一种类似的成规呢?没有理由拘泥于三个一组,我们可以选五个一组,这样就可将87*93乘积——亦即8091——的表达法写作111;11100;11011。

看,还有点益处。正如平常出现的那种情况,一个方面若稍有进展就可能会给尚未解决的相关问题带来帮助。这里的相关问题就是心读化的问题。我们都靠嘴来阅读,即使有时嘴唇肌肉动作完全受到抑制肉眼无法看到,喉管中仍旧在形成我们所阅读——或者思想的事物的任何声音。诸如***逗号***啊啊逗号**啊**这样一组,简直就无法发音。

不过,有能力评论一个问题,就等于在解决它的道路上前进了许多。很明显,给二进位数目赋予更多的发音价值是毫无困难的。

实际上,这样一种制度已经广泛得到运用。如果你在人声嘈杂的夜晚走进切尔西的爱尔兰沙洲银行,或许会碰到一两个海运官员在随意闲聊。由于人声鼎沸,他们并不怕人偷听,也不怕受到干预。如果你恰好听到他们谈话,他们又恰好是无线电报务人员,他们便会用电码互相交谈。就莫尔斯一点一画相间的电码而言,其中包含有一套非常严格的成规定则。“嘀”是短线,“嗒”是长线。如果我们就以这套规定而以二进位制代之的话,可能会丢掉某种便利——无疑一种更为严谨、更为明晰的体制有可能根据基本的发音规则被创造出来。但是,它却有一个特别的方便:它行之有效。我们用不着对它测验,用不着不相信它;我们明白它行之有效。它在全世界范围内为无数个无线电发报机工作已有好几个时代了。

让我们把“1”的发音当作“嘀”,“0”发作“嗒”。这样,111;11100;11011就变成嘀嘀嘀嘀嘀嘀嗒嗒嘀嘀嗒嘀嘀——

于是我们就会发现有点奇怪。我们已经承认,二进位制有一种本质上的缺陷,此即它的数目在原则上没有十进位制精确。

不过,如果我们要将十进位数8901转换成莫尔斯电码。就必须这样表示:嗒嗒嗒嘀嘀嗒嗒嗒嗒嗒嗒嗒嗒嗒嘀嘀嗒嗒嗒嗒。也就是,四组,每一组包含五个“位”,总共有20个“位”。

但是,正如上面所见到的,它的十进位数对等物只需三组,总共有13个“位”。

我们所认可的东西显然很不成熟,至少在这个特别的例子中是这样的——而这又绝不是无关紧要的例子——二进位制可以比十进位制更精确些。

既然能找到这样一个例子,那就让我鼓起勇气再多找一些吧。

我大约十岁时,我们小孩喜欢玩一种数数儿游戏在汽车上打发时间。我们会选一个普通的东西——牛或福特汽车或农场“出卖”的牌子——看看在给定时间内谁数得最多。这样总可使我们安静相处,在头一两英里平平静静——几乎总是这样。

麻烦的是,我们是靠手指数数的。这样自然可以顺利
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!