按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
谈到逻辑运演,我们想提出如下一些观察结果。七岁到八岁时,被试不但能建构加法结构,而且能建构乘法结构:如同时按两个标准分类的二因素表(即矩阵)、系列的对应、或者说双向的序列化(例如,按系列顺序排列树叶,竖行依照树叶的大小排,横行依照树叶颜色的深浅排)。但是这些成就更多地是属于成功地执行所提出来的任务的性质(例如,“把图形按最好的可能方式排列起来”,而不给以要如何排列的暗示),而较少地属于自发地应用结构。另一方面,九岁到十岁年龄的儿童在试着去分析出一个归纳性问题中的函数依存关系(例如:反射角和入射角之间的依存关系)时,显示出有发现数量上的协变的一般能力,虽然还不能够如同在下一阶段那样把其中所包含的因素分离出来,而是在系列化了的关系之间或类与类之间发现对应关系。然而,尽管在变量仍然没有充分区分开来时,这种工作程序可能是非常之笼统的,这种方法却显示出一种有效的运演的结构作用。同样,人们看到儿童在了解交叉方面也有明显的进展。虽然二因素矩阵所代表的笛卡儿乘积,作为完整的乘法结构在七岁到八岁水平上是容易掌握的(几乎是在这同一个时候,儿童也掌握了处置加法群集中的不连贯类的方法),两个或几个连贯类的交叉却只是在当前这个水平上才能掌握;在许多情况下,对AB<B这个归类作量的区分,儿童也只是在当前这个水平上才能掌握。
另一方面,在因果关系领域内,九岁到十岁这个水平显示出相当大的进展和同样显著的缺欠——有时在某种意义上说显得是退步——这两者有些难于理解地混杂在一起。我们先谈谈所获得的进展。直到这个水平以前,动力学的考虑和运动学的考虑还是没有分化的,这是由于身体的运动连同它的速度被认为是一种经常被称为是“冲动”的力。然而,在九岁到十岁水平,就发生了分化,也产生了协调,以致身体的运动特别是它们的速度的变化需要有一个外因的参预。而这个外因的作用可以用如下的符号来表示,即在一般时间t和一般距离e上发生的力f(即fte):在fte→dp这个意义上,则fte=dp,其中dp=d(mv)而不是mdv,而在前一阶段,我们看到的只是ftedp,或者甚至是ftep。不到下一阶段儿童是不会有加速度的概念的(参看f=ma)。某些涉及方向概念或前向量概念的进步是以力和运动的分化为基础的,这使得儿童现在既考虑主动移动着的物体的推和拉的方向,又考虑被推被拉物体的阻力(虽然其潜在概念只是一个制动效应的概念,还没有任何反作用的概念)。重量对这个进展提供了一个清楚的例证。例如,处于倾斜位置的棍子,直到这个时候以前都被认为是向它倾斜的方向落下去的,而在现在这个水平上则认为它是垂直地下落的。由此往后,要使一个玩具汽车爬上一个斜坡,就认为必须施加比把它保持在固定位置上更多的力,而在前一个水平上则儿童的认识与此相反——那时儿童认为,因为要使汽车保持不动,它会有一个掉下来的倾向,而用力把它往上推时它就不再向下掉了!重要的是,水表面的水平性在这以后被解释为由于液体有重量(直到这个时候之前,液体则被认为是几乎没有重量的,因为它有流动性),由于液体有往低处流的倾向,它排除液面高度的不等:在这里我们看到了形象之间的空间建构(在自然座标)与因果领域内的进步二者之间的紧密的相互依存关系,作为这种依存关系的结果,儿童就有了力和方向的概念,而且不再像这个时期以前那样,认为力和方向仅仅依存于水及其容器之间的相互作用了。
但是,这个因果性概念得到发展的代价是,被试给他自己提出了一系列新的动力学问题却不能掌握它们;这种情况有时从表面上看似乎是退步。例如,根据重物从此以后是垂直地下落这一事实,他就容易认为这重物挂在一根绳的下端比在它上端称起来要重些(尽管把重物挂在一根绳子的上端这种看法并不能成立,因为重物马上会下落……)。或者,他又会认为一个物体的重量会随着对物体的推力而增加,又随着物体速度的增加而减少,似乎人们会从p=mv导出m=pv似的;如此等等。很清楚,这样的假定阻碍着儿童对加法组成等等的掌握,并且引起了儿童表面上看起来是倒退的反应。为应付他的困难,儿童就区别出两个方面或两个领域,一方面,他把重量看作是物体的一个不变的特性;的确,也正是在这个水平上我们第一次看到客体在形状改变下重量的守恒,以及序列化传递性和其它一些可适用于这个概念的运演性组成。但在另一方面,他又断定重量的效果是可变的,简单地肯定物体的重量在某些情况下比在其它情况下“拿起来”或“称起来”(或“拉起来”)等等显得重些:这样说是不假的,但是,只要重量没有如在下一个阶段那样和空间大小(长度、面积,或体积),以及力矩、压力、密度或相对重量、尤其是功等等概念联结起来,那重量概念就仍然是不完全的,并且是武断的。
总的来说,具体运演阶段的第二水平展现出一个自相矛盾的局面。直到现在以前,从主客体之间未分化的最初水平开始,我们已观察到在两个方向上的互相补充和相对地等值的进展:已有了活动的内部协调,随后又有主体的运演的内部协调,也有了活动的最初是心理形态学的外部协调,这些活动随后成为运演的活动并被归因于客体。换句话说,我们已经一个水平一个水平地观察到两种密切相关的发展,即:逻辑数学运演的发展和因果关系的发展,就把形式归因于内容这个方面来说,逻辑数学运演的发展影响着因果关系的发展,就内容服从于形式的难易这个观点来说,则因果关系的发展影响着逻辑数学运演的发展。空间观念兼有这两个方面或这两种性质,它既是从主体的几何运演或逻辑下运演产生的,又是从客体的静态的、运动学的甚至动力学的特性产生,从客体的这些特性产生了它那种作为表示关系的媒介的不变作用。我们把具体运演阶段的第二个子阶段看作既是它的先行阶段的延伸,又是对此后阶段的创新的预示。
一方面,经过概括化并得到了平衡,逻辑数学运演,包括空间运演,就达到了最大限度的扩展和利用,但仍然处于具体运演的很有限的形式之下,具有(对于类和关系来说)所有伴随“群集”结构而来的局限性;后面这些局限性是好容易才被算术化和量度几何化的开始出现所超越的。另一方面,探求原因甚至在寻求因果解释方面的发展,表明有一种超过第一子阶段(七岁到八岁)的明显进步,它导致被试提出一堆他还不能以他所掌握的运演方法来解决的运动学问题和动力学问题。于是就发生一系列富有成果的不平衡情况,我们认为正是这些情况才能算是新的东西。无疑,它们在功能方面是与那些从发展一开始就出现的特点相类似的,但它们对以后的结构化作用有着重要得多的意义。因为它们使已经存在的、现在头一次得到稳定的运演结构臻于完善,在它们的“具体运演”的基地上建构起那些“对运演的运演”或第二级运演,这些运演是由命题运演或形式运演组成的,具有着它们的组合性特点、它们的四变数群、它们的比例关系和分布关系、以及因果领域内由这些新特征才使之成为可能的一切东西。
六、形式运演
随着在将近十一岁到十二岁时开始形成的形式运演的出现,我们就达到了运演发展过程的第三个重要阶段。在这个阶段,运演从其对时间的依赖性中解脱了出来,也就是说从儿童活动的前后心理关系中解脱了出来——在这种前后关系中运演的蕴含特性或者说逻辑特性也具有因果性的方面。正是在这个阶段,运演最后具有了超时间性,这种特性是纯逻辑数学关系所特有的。第一阶段是符号功能阶段(将近一岁半到两岁):模仿内化为表象形式而儿童学会了说话,使得现在能把先后相继的活动压缩成为同时性表象的形式。第二重要阶段是具体运演开始的阶段。具体运演把预见和回顾协调了起来,因而产生了可逆性,它可以说能“把时钟倒拨回来”并回复到时间上的起点。不过,我们在这方面虽可以谈到儿童对时间观念的日益增长的掌握,时间仍然跟活动和摆弄实物动作紧密地联系在一起,而活动和摆弄实物在时间上却是先后相继的。因为我们讨论的仍然是“具体”运演,即同客体和实际物理变化有关的运演。另一方面,“形式”运演标志出一个第三阶段。在这里认识超越于现实本身,把现实纳入可能性和必然性的范围之内;从而就无需具体事物作为中介了。以整数的无穷级数、连续统的幂、或由p、q这两个命题及其反命题的组合而产生的十六种运演等作为例证的这个认知的可能性王国,与发生在时间上的物理位移相反,在本质上是超时间的。
形式运演的主要特征是它们有能力处理假设而不只是单纯地处理客体:这是研究这个问题的所有作者都注意到的儿童在十一岁左右出现的那个基本创新。但是这个特点还牵涉到另一个同等重要的特点。儿童提出的假设并不是客体,而是命题,假设的内容则是类、关系等等的能够直接予以证实的命题内运演;从假设推导出来的推论也是这样。另一方面,我们利用它来从假设达到结论的那种演绎性运演则属于一个十分不同的类型,这是命题间运演,是对运演进行的运演,也就是二级运演。在这里我们看到了只是在当前这个水平上而不是在早于这个水平上所形成的这些运演的一个很普遍的特点,这些运演有例如应用蕴含等等的运演,应用命题逻辑的运演或在关系之间加工制造出的关系(比例关系、分布关系等)的运演,以及协调两个参照系统的运演等等。
就是这个对运演进行运演的能力使得认识超越了现实,并且借助于一个组合系统而使认识可以达到一个范围无限的可能性,而运演就不再像具体运演那样限于一步一步地建构了。例如,n乘n的组合为一切可能的分类形成了一个分类;排列性运演则为一切可能的系列化形成了一个系列化,如此等等。形式运演的一个重要的新特点在于形式运演是以一个组合系统为基础通过加工制造出“所有子集合的集合”,或者说单纯形,而使最初的系统变得丰富起来的。特别是,我们知道命题运演是具有这种结构的,正如一般类的逻辑一旦摆脱了最初“群集”的特定限制就能具有这种结构一样。同时格的建构也能够出现了。因此在迄今已描述的种种新特点之间是存在着重要的统一性的。
但是,我们需要指出另一种基本结构。我们对心理学事实的分析使我们大约在一九四八年到一九四九年就能够把这种结构分析出来,时间比逻辑学者对它感到兴趣时还早。这就是把命题组合(或一般地说“所有子集合的集合”)之内的反运演和互反性运演联合成为一个单一的“四变数群”(即克莱因群)。具体运演有两种形式的可逆性:反运演或者说否定性运演,它会把一个项消去,