友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
麒麟书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

人类的知识-第72部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



一部分的事实叙述。特别是不管归纳原则是真还是伪,它都要断言作为一件
事实来看,某些种类的大多数系列从始至终都具有一种特点,在这个系列的
大量连续的项目中都有这种特点出现。如果这是事实,归纳论证就可能产生
概率;如果不是事实,归纳论证就不能产生概率。我现在不是探讨我们怎样
知道它是否是一件事实;这是我要留到我们所从事的研究的最后部分来谈的
一个问题。

在上面的讨论中,我们将看到我们已经在许多论点上与莱新巴哈取得一
致的意见,同时却一直不同意他给概率所下的定义。我对于他的定义所抱的
主要反对意见是这个定义所依靠的频率是假言性质的和永远不能确定的。我
同他的分歧还在于我比他更明确地把概然性和可疑性区别开来,以及我认为
与必然逻辑相对待的概然逻辑从逻辑上讲并不是最基本的东西。

第五章凯恩斯的概率论

凯恩斯的《概率论》(1921)提出了从某种意义上讲与频率说正好相反
的一种理论。他主张演绎中所用的那种关系,即“P 蕴涵q”是一种也许可
以叫作“P 多少蕴涵q”的关系的极端形式。“如果关于h 的一种知识”,他
说,“证实一个具有a 程度的对于a 的合理信念,我们就说在a 和h 之间存
在着一种具有a 程度的概率关系”。我们把这种关系写成:“a/h=a”。“在
两组命题之间存在着一种关系,凭借这种关系,如果我们知道了第一组命题,
我们就可以把某种程度的合理信念加给后一组命题”。概率基本上是一种关
系:“说‘b 是可能的’和说‘b 等于’或‘b 大于’是同样没有用处的”。
我们可以从“a”和“a 蕴涵b”得出“b”的结论;这就是说,我们可以完
全不谈前提而只肯定结论。但是如果a 对于b 的关系使得关于a 的一种知识
把对于b 的一种概然的信念变得合理化,我们就不能对于与a 无关的b 作出
任何结论;没有任何相当于证明推理中废除一个真的前提的东西。

按照凯恩斯的说法,概率是一种逻辑关系,这种关系也许只有用合理信
念的程度的说法才能得出定义。但是从总的方面看来,凯恩斯却倾向于用概
率关系的说法来给“合理信念的程度”下定义。他说合理的信念是从知识得
来的:我们对于p 有α程度的合理信念,这是因为我们知道某个命题h 并且
还知道p/h=α。由此可以看出具有“p/h=α”这种形式的某些命题一定在
我们的前提之内。我们的知识一部分是直接得到的,一部分是从论证得到的;
我们从论证得到的知识来自具有“p 蕴涵q”或“q/p=α”这种形式的命题
的直接知识。在每一个经过充分分析的论证中,我们一定具有关于从前提到
结论的关系的直接知识,不管它是蕴涵关系还是某种程度的概率关系。关于
h 和p/h 的知识引出对于p 的一种“适当程度的合理信念”。凯恩斯明确地
假定一切直接的知识都是必然的,而够不上必然性的合理信念只有在我们觉
察到概率关系时才能发生。

按照凯恩斯的说法,一般说来概率是不能以数值来度量的;那些可以用
数值来度量的概率是概率中很特殊的一类。他认为一个概率与另外一个概率
可能不可以进行比较;换句话说,一个概率可能不大于也不小于,然而又不
等于另外一个概率。他甚至认为就已知证据来讲,有时不可能比较p 和非p
的概率。他的意思并不是说我们的知识不足以做到这一点;他的意思是说实
际上并不存在相等或不相等的关系。他是照下面的几何图式来想象概率的:
取两个点,分别代表不可能性的0 和必然性的1;然后我们就可以想象可以
用数值来度量的那些可能性位于0 与1 之间的直线上,而其它的概率则位于
从0 到1 之间的不同弯曲路线上。对于同一条路线上的两个概率,我们可以
说比较接近于1 的较大,但是我们对于在不同路线上的概率却不能进行比
较,除非两条路线相交,这种情况也是可能发生的。

象我们已经看到的那样,凯恩斯需要有关概率命题的直接知识。为了在
获得这类知识上做出一个起点,他考察并修正了一般所谓的“不充足理由原
理”或者按照他的说法“无差别原理”。

就其大意来讲,这个原理说如果没有已知理由选择几种可能当中一种而
不是另外一种可能,那么这些可能就是同样可能的。在这种说法下,象他所
指出的那样,这个原理产生矛盾。举例说,假定你一点也不知道某一本书的
颜色;那么它是蓝色或不是蓝色的机会相等,因而各是1/2。同样它是黑色

的机会也是1/2。所以它是蓝色或黑色的机会是1。由此可以得出凡书不是蓝
色就是黑色的结论,而这是荒谬的。或者假定我们知道某一个人不是居住在
大不列颠就是居住在爱尔兰;我们将把这些作为我们的可能选择,还是将把
英格兰、苏格兰和爱尔兰,或者将把每个郡看作具有同样可能的地方?或者
如果我们知道某种物质的比重介乎1 与3 之间,那么我们将把1 到2 和2 到
3 之间的间隔当作同样可能的比重吗?但是如果我们研究比容,那么1 到2/3
和2/3 到1/3 之间的间隔将是我们的自然的选择,这将使比重具有介乎1 和
3/2 之间或者3/2 和3 之间的相等机会。这类悻论可以无限地增多。

凯恩斯并没有因为这个理由而完全抛弃无差别原理;他认为我们可以这
样叙述这个原理,使它一方面避免上面所说的各种困难,一方面仍然有用。
为了这个目的,他首先给“无关”下定义。

大致说来,一个不改变概率的附加前提是“无关的”;这就是说,如果
x/h1h=x/h;那么hi 对于x 和h 来说是无关的。例如,一个人的姓以M 开始
这件事实对于他的生死机会来说就是无关的。

可是上面的定义多少有些过于简单,因为h1 可能由两部分组成,其中一
部分增加X 的概率而另一部分却减少X 的概率。举例说,一个白种人生存的
机会由于居住在热带而减少,但是由于成为一个完全戒酒的人而增加了生存
的机会(或者人们是这样说的)。事实可能是在热带居住的完全戒酒的白种
人的死亡率跟一般白种人的死亡率一样,但是我们不应当说作为一个居住在
热带的完全戒酒的人是无关的事情。所以,我们说h1 对于x/h 来说是无关
的,如果375h1 当中任何一部分都不改变x 的概率的话。

现在凯恩斯用下面的说法来叙述无差别原理:a 和b 相对于已知证据的
概率是相等的,如果关于a 的有关证据都说明存在着关于b 的相应的证据;
这就是说,a 和b 关于这种证据的概率是相等的,如果这种证据关于a 和b
是对称的话。

可是这里还要添上一项比较困难的条件。“我们必须把那些事例除外,
在它们当中所涉及的各种选择之一本身就是同一形式的次一级的各种选择
的析取命题”。如果这个条件得到满足,这些选择相对于这种证据来说就叫

作不可分的。凯恩斯给“可分的”下了下面的正式定义:一个选择( )

j a

相对于证据来说是可分的,如果已知,而“( )”和“( )或

hh jj b( )”意义相等,这里( )和( )是不相j 容(a) 的,但当h

jj b 为真时

每个(c) 都是可能的。这里(),()b(a) , ( )都是同一命题函项的j c

j a j

值,这是很重要的一个条件。

这样凯恩斯最后把下面这个原理当作一个公理接受下来,即根据已知证
据,如果(1)这种证据关于a 和b 是对称的,(2)相对于这种证据来说,

j a j b j a j b

( )和( )是不可分的,那么( )和( )就具有相同的概率。

经验主义者对于上面的理论可能提出一个一般性的反对理由。他们也许
可能说这个理论所要求的关于概率关系的直接知识显然是不可能的。演绎的
证明逻辑——这种论证可能这样说——之所以可能是由于它由重言式组成,
由于它只不过是换一下文字来重新叙述我们原来就有的命题。如果它所做的
超过了这一点——比方说如果它从“凡人皆有死”推论出“苏格拉底是有死
的”,那么它依靠的是关于“苏格拉底”这个词的意义的经验。只有重言式
可以不靠经验得知,凯恩斯并没有主张他的概率关系是重言式。那么他的概
率关系是怎样得知的?因为显然它们不是从经验得知的,这是按照关于知觉

的判断是从经验得知的那种意思来说的;人们也承认概率关系当中有一些并
不是推论出来的。因此,如果人们承认的话,概率关系会构成经验主义认为
不可能的一种知识。我对于这个反对理由抱有很大同情,但是我并不认为我
们可以认为它具有决定性的意义。如果我们来讨论科学推论的原理。我们就
将发现:除非我们具有某种如果照严格意义来讲的经验主义为真就不会有的
知识,否则科学就是不可能的。不管怎样,我们不应当武断地假定经验主义
为真,虽然我们努力找寻可以与经验主义相容的关于我们的问题的答案是合
理的。因此上面的反对理由不应该让我们完全抛弃凯恩斯的理论,尽管它对
于我们接受凯恩斯的理论形成一定的阻力。

关于凯恩斯似乎不曾加以充分注意的一个问题存在着一种困难,即关于
前提的概率是否赋予已经成为可能的命题以合理的可信性,并且如果事实是
这样的话,又是在什么外界条件下发生的?凯恩斯认为说“很可能有p”和
说“p 等于”或“p 大于”同样没有意义。照他的讲法,没有任何相当于演绎
推论中废除一个真的前提的东西。然而他却说如果我们知道h,并且我们还
知道p/h=α,我们就有理由给p 以“适当程度的合理信念”。但是当我们
这样做的时候我们就不再是表示p 对于h 的一种关系;我们是在用这种关系
来推论出关于p 的某种情况。我们可以把这种情况叫作“合理的可信性”:
并且我们可以说:“p 在α程度上是合理可信的”。但是如果使这句话成为
关于p 的一个真的叙述,而无需提到h,那么h 就不能是任意规定的。因为
假定p/h=α,p/h=α′;假定h 和h′都是已知的,我们将给p 以α程度
还是α′程度的合理可信性?就我们知识的任何特定状态来说,这两种答案
都不可能同时正确。

如果“概然性是人生的指南”这句话是真理,那么就我们知识的任何特
定状态来说,必然有一个概率比任何其它概率都更紧密地与p 结合在一起,
而这个概率对于任意规定的前提来说都不是与之相关的。我们必须说这个概
率就是在我们把h 当作我们的全部有关知识时所得出的概率。我们可以说:
已知作为某个人的必然性知识的任何一组命题,并把这组命题的合取命题叫
作h,那么就有许多不是这组命题的分子的命题对这组命题具有概率关系。
如果p 是这样一个命题,并且p/h=α那么a 是就那个人来说的属于p 的合
理可信的程度。我们一定不能说如果h′是所说的那个人所知道的某个真的
命题,但不及h,并且如果p/h=α′,那
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!