友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
麒麟书城 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

亚里士多德的三段论-第32部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




    变形Ⅸ能用同样的方式加以解释。

    这一点我们可以直接地应用于我们的例子。

    以Aab代α,Iab代β,以及p代π;你得到CAab

    Iab。

    用同样方式,从CAba

    CNIabp得出CAbaIab。

    如果我们有多于两个前件的表达式,例如,有几个前件,我们必须重复地应用变形Ⅶ,首先把n—1个前件化为一个前件,然后再应用变形Ⅷ和Ⅸ。

    例如,举以下例子:CNIabCAcbCAdcCIadp~CNCNIabNAcbCAdcCIadp由Ⅶ,CNCNIabNAcbCAdcCIadp~CNCNCNIabNAcbNAdcCIadp由Ⅶ;CNCNCNIabNAcbNAdcCIadp~CNCNCNIabNAcbNAdcNIad由Ⅷ;CNCNCNIabNAcbNAdcNIad~CNCNIabNAcbCAdcNIad由Ⅶ;CNCNIabNAcbCAdcNIad~CNIabCAcbCAdcNIad由Ⅶ。

    定理(TA)

    现在充分地被证明了。

    所以我们能够进行到我们的主要项目:亚里士多德三段论系统的判定的证明。

…… 182

    071第五章 判定问题

    3。三段论系统的初等表达式A根据定理(TA)

    ,亚里士多德三段论系统的表达式都能够用演绎地等值的方式化归为一组初等表达式,亦即具有

    Cα1Cα2Cα3Cαn1CαnC形式的表达式,其中所有的α都是三段论系统的简单表达式,亦即Aab,Iab,Eab或NIab,以及Oab或NAab等类型的表达式。

    现在,我将表明三段论系统的每一个初等表达式都是可判定的,也就是说或者被断定,或者被排斥。

    我将首先证明所有简单表达式(除Aaa及Iaa型的表达式外)都是被排斥的。

    我们已经看到(第27节,公式P61)

    Iac是被排斥的。

    这里是其它表达式的排斥的证明:P61×P10。

    cb' P10。

    Iab8×CP101-P100(8,CAabIab)

    P101。

    AabIV。

    pAa,qIab×C1—102'                    '(IV。

    CpCNpq)

    102。

    CNAaⅠab102×CP103—P10P103。

    NAaa(=Oa)

    P103×P104。

    ba' P104。

    NAab(=Oab)

    IV。

    pIa,qIab×C2—105'105。

    CNIaIab

…… 183

    3。三段论系统的初等表达式A                                                                         171

    105×CP106—P10P106。

    NIaa(=Ea)

    P106×P107ba' P107NIab(=Eab)

    现在转向复杂的初等表达式,我将相继地研究所有可能的情况,而省去可能的形式证明,而仅提出它们如何能得以证明的提示。

    有六种情况应当加以研究。

    第一种情况:后件αn是否定的,而所有各前件都是肯定的。

    这样的表达式都是被排斥的。

    证明:把在这个表达式中出现的所有变项都等同于a,作为同一律Aau或Ia,所有前件都成为真的,而后件成为假的。

    我们看出,对于这个情况的解决说来,同一律乃是根本的。

    第二种情况:后件是否定的,并且只有一个前件是否定的。

    这个情况可以化归为只具有肯定元素的情况,并且这样的情况,如我们随后将看到的,总是可判定的。

    证明:CαCNβNγ形式的表达式都演绎地等值于CαCγβ形式的表达式(对于断定命题CCpCNrNqCpCqr与CCpCqrCCpCNrNq而言)

    ,这不仅对于一个肯定的前件α是真的,而且对于任何数量的肯定的前件都是真的。

    第三种情况:后件是否定的,并且一个以上的前件是否定的。

    这类表达式能化归为简单表达式,以至最终化归为第二种情况。

    这个情况的解需要斯卢派斯基排斥规则。

    证明:让我们假定原表达式是CNαCNβCγ…

    Np形式的。

    因为任一前件都可以移至无论那一个位置,这个假定总是可以作出的。

    我们把这个表达式相应地省去其第二个或第一个

…… 184

    271第五章 判定问题

    前件,化归为两个比较简单一些的表达式CNαCγ…

    Np与CNβCγ…

    Np。

    如果这些表达式有一个以上的否定前件,我们就重复这种处理,一直到我们得出只带有唯一的否定前件的公式为止。

    因为根据第二种情况,这样的公式都是演绎地等值于可判定的肯定的各表达式的,所以它们总是或者被断定或者被排斥。

    只要它们之中的一个被断定了,那末原表达式也必须被断定,因为用简化定律我们可以把先前加以省略的所有其它否定前件加于这个断定的公式之上。

    然而如果所有具有一个否定前件的公式都被排斥了,那么我们重复运用斯卢派斯基排斥规则,从它们得出原表达式必须被排斥。

    举两个例子就可以透彻地说明问题。

    第一个例子:CNAabCNAbcCNIbdCIbcNAcd是一个断定命题。

    我们把这个表达式化归为(1)与(2)

    (1)CNAabCNIbdCIbcNAcd,(2)CNAbcCNIbdCIbcNAcd。

    用同样方式,我们把(1)化归为(3)和(4)

    :(3)CNAabCIbcNAcd,(4)CNIbdCIbcNAcd。

    并且把(2)化归为(5)和(6)

    :(5)CNAbcCIbcNAcd,(6)CNIbdCIbcNAcd。

    现在最后一个表达式是一个断定命题;它是第三格的Ferison式。

    在CpCqp中,以(6)代p,并以NAbc代q,我们得到(2)

    ,再一次应用CpCqp,以(2)代p,并以NAab代q,我们就达到了原命题。

    第二个例子:CNAabCNAbcCNIcdCIbdC

…… 185

    3。三段论系统的初等表达式A                                                                         371

    NAad,并非一个断定命题。

    如同前面的例子一样,我们把这个表达式化归为:(1)CNAabCNIcdCIbdNAad,(2)CNAbcCNIcdCIbdNAad;然后,我们把(1)化归为(3)和(4)

    ,并且把(2)化归为(5)和(6)

    :(3)CNAabCIbdNAad,(4)CNIcdCIbdNAad,(5)CNAbcCIbdNAad,(6)CNIcdCIbdNAad。

    所有以上带有一个否定前件的公式,都不是断定命题,这可以用把它们化归为只有肯定元素的情况的办法来加以证明。

    表达式(3)

    ,(4)

    ,(5)和(6)都是被排斥的。

    应用斯卢派斯基规则,我们从被排斥的表达式(5)和(6)得到(2)必须被排斥,并且从被排斥的表达式(3)和(4)

    ,得到(1)必须被排斥。

    但是,如果(1)和(2)都被排斥了,那么,原表达式也必须被排斥。

    第四种情况:后件是肯定的,而有些(或所有)前件都是否定的。

    这个情况可以化归为第三种情况。

    证明:CαCNβγ形式的表达式,在断定命题CpCNqrCpCNqCNrNAaa与CCpCNqCNrNAaCpCNqr的基础上都演绎地等值于CαCNβCNγNAaa形式的表达式,因为NAaa总是假的。

    带有否定元素的所有情况就这样地穷尽地考察过了。

    第五种情况:所有前件都是肯定的,而后件是一个全称

…… 186

    471第五章 判定问题

    肯定命题。

    有几种从属情况应当加以区分:(a)

    后件是Aa;这个表达式是断定的,因为它的后件是真的。

    (b)

    后件是Aab,而且Aab也是前件之一。

    这个表达式当然是被断定的。

    以下都假定Aab不作为前件出现。

    (c)后件是Aab,但是没有前件是Aaf型的(f不同于a,并且,当然也不同于b)。

    这样的表达式都是被排斥的。

    证明:将不同于a与b的所有变项等同于b,我们只能得到以下的前件:

    Aa,Aba,Ab,Ia,Iab,Iba,Ibb。

    (我们不能得到Aab,因为没有前件是Aaf型的,其中f不同于a。)前提Aa,Ab,Ia,Ibb可因其是真的而略去。

    (如果没有其它前提,这个表达式就被排斥,犹如在第一种情况中一样。)如果除了Iab之外还有Iba,它们之一可以省略掉,因为它们彼此是等值的。

    如果有Aba,则Iab与Iba两者都可以略去,因为Aba蕴涵着它们二者。

    在这些化归之后,只有Aba或Iab能够作为前件留下来。

    现在可以表明这两个蕴涵式,CAbaAab与CIabAab,根据我们的排斥公理都是被排斥的:

    X。

    pAcb,qAba,rIac,SAab×C27—108'108。

    CAabAbaCKAcbAabIac(X。

    CKpqrCsqCKpsr;

    108×CP109—P5927。

    CKAcbAbaIac)

…… 187

    3。三段论系统的初等表达式A                                                                                571

    P109。

    CAabAbaP109×P110。

    baab' P10

    CAbaAab。

    如果CAbaAab被排斥,则CIabAab必定也被排斥,因为Iab是比Aba更弱的前提。

    (d)后件是Aab并且有Aaf型的前件(其中f不同于a)。

    如果有一个由a导至b的系列,根据公理3(Barbara式)

    这个表达式被断定;如果没有这样的系列,这个表达式就被排斥。

    证明:我把一个由a导至b的系列了解为一个有序的全称肯定前提的序列:

    Aac1,Ac1c2…,Acn1cn,Acnb,C序列的第一项有a作为它的第一个变元。

    最后一项有b作为它的第二个变元。
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!